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Abstract

We evaluate the next-to-leading-order QCD corrections of O(a?GrM}?) to the
Standard-Model (+*¢~H, ZZH, and W*W~H couplings in the heavy-top-quark
limit. Exploiting these results together with knowledge of Ap to the same order,
we analyze a variety of production and decay processes of low-mass Higgs bosons at
ete” colliders. Specifically, we consider H — £+£~) H — (YL~ f'+{'~ ete~ — ZH,
Z — ffH,and ete~ — ffH, with f = £,v. We work in the electroweak on-shell
scheme formulated with G and employ both the on-shell and MS definitions of the
top-quark mass in QCD. As expected, the scheme and scale dependences are greatly
reduced when the next-to-leading-order corrections are taken into account. In the
on-shell scheme of top-quark mass renormalization, the O(a?GrM?) corrections act
in the same direction as the O(a,GrM}) ones and further increase the screening of
the O(GrM?) terms. The coefficients of (a,/x)? range from —6.847 for the ZZH
coupling to —16.201 for the £*£~ H coupling. This is in line with the value —14.594
recently found for Ap.
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1 Introduction

After the celebrated discovery of the top quark [1], the Higgs boson is the last missing
link in the Standard Model (SM). The detection of this particle and the study of its
characteristics are among the prime objectives of present and future high-energy colliding-
beam experiments. Following Bjorken’s proposal [2], the Higgs boson is currently being
searched for with the CERN Large Electron-Positron Collider (LEP1) and the SLAC
Linear Collider (SLC) via ete — Z — ffH. At the present time, the failure of this
search allows one to rule out the mass range My < 64.3 GeV at the 95% confidence
level [3]. The quest for the Higgs boson will be continued with LEP2 by exploiting the
Higgs-strahlung mechanism [4, 5], ete~ — ZH — ffH. In next-generation ete~ linear
supercolliders (NLC), also ete™ — w.v.H via WTW~ fusion and, to a lesser extent,
ete™ — ete™ H via ZZ fusion will provide copious sources of Higgs bosons.

Once a novel scalar particle is discovered, it will be crucial to decide if it is the very
Higgs boson of the SM or if it lives in some more extended Higgs sector. To that end,
precise knowledge of the SM predictions will be mandatory, i.e., quantum corrections
must be taken into account. The status of the radiative corrections to the production
and decay processes of the SM Higgs boson has recently been summarized [6]. Since
the top quark is by far the heaviest established elementary particle, with a pole mass
of M; = (180 £ 12) GeV [1], the leading high-M; terms, of O(GrM?), are particularly
important, and it is desirable to acquire information on their quantumchromodynamical
(QCD) corrections. During the last year, a number of papers have appeared in which the
two-loop O(a,GrM}) corrections to various Higgs-boson production and decay processes
are presented. These processes include H — ff, with f #b([7)and f = 5[8,9], Z — ffH
and ete” — ZH [10], ete™ — v H via WHW ™ fusion [11], gg — H [11, 12], and more
[11]. In this paper, we shall take the next step and tackle with three-loop O(a?GrM?)
corrections. To keep matters as simple as possible, we shall restrict our considerations
to light Higgs bosons, with My <« M,, and to reactions with colourless particles in the
initial and final states. Such reactions typically involve the {*{~H, W*W~H, and ZZH
couplings together with gauge couplings of the W and Z bosons to leptons. We are thus
led to incorporate the next-to-leading QCD corrections in the low-My effective £+4~H,
W*W~-H, and ZZH interaction Lagrangians. This will be achieved in Section 2.

Recently, the O(a2GrM}?) correction to Ap has been calculated and found to be size-
able [13]. This is relevant for present and future precision tests of the standard electroweak
theory. It is of great theoretical interest to find out whether the occurrence of significant
O(a?GrM}) corrections is specific to Ap or whether this is a common feature in the class
of electroweak observables with a quadratic M; dependence at one loop. In the latter
case, there must be some underlying principle which is able to explain this phenomenon.
Our analysis will put us into a position where we can investigate this matter for four
independent quantities. We shall return to this issue in Section 5.

The complete evaluation of the one-loop electroweak correction to a process which
involves more than four external particles is enormously intricate. To our knowledge, the
literature does not contain a single example of such a calculation. However, the so-called



improved Born approximation (IBA) [14] allows us to conveniently extract at least the
dominant fermionic loop corrections. As a by-product of our analysis, we shall illustrate
the usefulness of the IBA for Higgs-boson production and decay in high-energy ete~
collisions. The appropriate formalism will be developed in Section 3.

™ This paper is organized as follows. In Section 2, we shall extend the low-M;; effective
tH~H, WYW~H, and ZZH interaction Lagrangians to O(a?GrM?). In the G for-
mulation of the electroweak on-shell scheme, knowledge of the QCD-corrected W*W - H
coupling is sufficient to control the related four- and five-point Higgs-boson production
and decay processes which emerge by connecting one or both of the W bosons with lepton
lines, respectively. Contrariwise, the corresponding processes involving a ZZH coupling
receive additional QCD corrections from the gauge sector, which we shall evaluate by
invoking the IBA in Section 3. In Section 4, we shall quantitatively analyze the phe-
nomenological consequences of our results. Section 5 contains our conclusions. ’

2 Effective Lagrangians

Throughout this paper, we shall work in the electrowea.k on -shell renormalization scheme
[15], with GF as a basic parameter, and define ¢, = 1 —s2 = MZ /M2 [16]. In particular,
this implies that the lowest-order formulae are expressed in terms of G, ¢y, 8w, and the
physical particle masses. The self-energies of the W, Z, and Higgs bosons to O(a?GrM?)
for zero external four-momentum squared will be the basic ingredients of our analysis.
While the results for the W and Z bosons are now well established [13], the Higgs-boson
self-energy requires a separate analysis, which will be performed here. Qur calculation
will proceed along the lines of Ref. [13]. We shall employ dimensional regularization in
n = 4 — 2¢ space-time dimensions and introduce a 't Hooft mass, y, to keep the coupling
constants dimensionless. We shall suppress terms containing 75 — In(47), where g is
Euler’s constant. These terms may be retrieved by substituting p? — 4we~"E42, In the
modified minimal-subtraction (MS) scheme [17], these terms are subtracted along with
the poles in e. This is also true for the relation between the MS and pole masses of
the quarks, so that these terms are also absent when the quark masses are renormalized
according to the on-shell scheme. Since we wish to extract the leading high-M, terms,
we may neglect the masses of all virtual particles, except for the top quark. As usual, we
shall take 5 to be anticommuting for n arbitrary. We shall choose a covariant gauge with
an arbitrary gauge parameter for the gluon propagator. This will allow us to explicitly
check that our final results are gauge independent. The requirement that the expressions
for physical observables be renormalization-group (RG) invariant will serve as a further:
check for our calculation.

Large intermediate expressions will be treated with the help of FORM 2.0 [18]. The
tadpole integrals which enter the one- and two-loop calculations may be solved straight-
forwardly, even for arbitrary powers of propagators. The three-loop case is more involved.
After evaluating the traces, the scalar integrals may be reduced by decomposing the scalar
products in the numerator 1nto appropriate combinations of the factors in the denomi-



nator. Subsequently, recurrence relations derived using the integration-by-parts method
[19] may be applied to reduce any scalar Feynman integral to a small number of so-called
master diagrams, which remain to be calculated by hand. More technical details may be
found in Ref. [13].

" Prior to listing our results, we shall introduce our notation. We take the colour gauge
group to be SU(N,.); Cr = (N2 —1)/(2N,) and C4 = N, are the Casimir operators of
its fundamental and adjoint representations, respectively. As is usually done for SU(N,),
we fix the trace normalization of the fundamental representation to be Tr = 1/2. In
our numerical analysis, we set N. = 3. We explicitly include five massless quark flavours
plus the massive top quark in our calculation, so that we have ny = 6 active quark
flavours altogether, i.e., we must not consider n; as a free parameter. We denote the
QCD renormalization scale by p. We evaluate the strong coupling constant a,(p), at
next-to-leading order (two loops) in the MS scheme, from

SONNE M. A "
- Bol(/ALy) | B Ta(pi/ALg
where Az is the asymptotic scale parameter appropriate for ny = 6 and [20]
1/11 2 7
ho=1 (?CA -5) =7
1 13 .
B = 16 ( —C3% —2Cpn; — —CAn_f) =3 - (2)

are the first two coefficients of the Callan-Symanzik beta function of QCD. We define
o = 4k = au(u)/r, 2 = [Grmi(u)/8x?V2), X, = (GrM}/87*V3), | = lalu?/m3(u)],
and L = In(p?/M?), where m,(p) and M; are the MS and pole masses of the top quark,
respectively, and Gr is Fermi’s constant. Using the two-loop relation between m.(M,)
and M, [21] along with the RG equation for m;(x), we find

Ti‘l('p‘) =1+ hOr(-3L — 4) + KCr { I (gcp - S0+ ng) + 1 ( Cr — E5-0,,
t
13

+ Sing) =120(2) + 6+ Cp [~120(3) + 6¢(2)(81n2 ~ 5) + §]

+ Ca[60(3) + 8¢(D)(-31n2-+ 1) - 7] +y [40(2) + 1]}

M_a(LJrg.)_a (§L2+%5L+9125451) _ (3)

Riemann’s zeta function takes on the values {(2) = #?/6, {(3) ~ 1.202057, and {(4) =
#4/90. The numerical constants [13]

S, = ——Cl ( ) ~ 0.260 434
9\/— 2 ’
D ~ —3.027009,
2

B, = 16Li (%) - 264 - 4(2)1n?2 + 21n*2 ~ ~1.762800, (4)
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where Cl; is Clausen’s function and Lis is the quadrilogarithm, occur in the evaluation
of the three-loop master diagrams.

In the following , we shall frequently make use of the QCD expansion of Ap through
O(a?GrpM?). For the reader’s convenience, we shall list it here for N, = 3 and n; = 6.
The MS and on-shell results read [13]

Ap~ Nz, [1 + a(21 - 0.193245) + o? (-14512 +2.025 3301 — 3.969 560)] , (5)
Ap~ N.X[1 —2.859912a — a?(5.004846 L + 14.594 028)], (6)
respectively.

To start with, we shall construct the low-My effective £*{~ H interaction Lagrangian
through O(a?GrM?). In the following, bare quantities will be labelled with the super-
script 0. The bare {t£{~ H Lagrangian reads

HO
Lung = —m?ZDZOF, (7)

where v denotes the Higgs vacuum expectation value. The renormalizations of the lepton
mass and wave function do not receive corrections in O(a?GpM?), where n = 0,1,2,
so that we may replace m? and £° with their renormalized counterparts. In the Gp
formulation of the on-shell scheme, we have [22]

HO

—o =2/ H(1+ 6.), (8)
with R
ww
6u=_§ "—W'*' ’H}'I(O) . (9)

Here, Iww(q?) and Mgy (g?) are the W- and Higgs-boson self-energies for external mo-
mentum g, respectively, and the subscript u is to remind us that this term appears as a
universal building block in the radiative corrections to all production and decay processes
of the Higgs boson. Consequently, the renormalized version of Eq. (7) reads

Ly = —21/4G},!2m(ZZH(1 + 6,,) (10)

The one-loop expressions for Ilyw(g?) and I 5 x(g?) have been presented in Ref. [23].
The leading-order QCD corrections to IIww/(g?) and My x(g?) for arbitrary quark masses
have been found ir Refs. [24, 7], respectively. The O(a,GrM?) term of §, has indepen-
dently been.obtained in Ref. [9] by using the computational technique outlined above at
the two-loop level. Here, we shall extend this analysis to O(a?GrM?). The O(a2GrM})
term of IIww(0) may be found in Ref. [13]. The Feynman diagrams pertinent to IIz(g?)
in O(a?GrM?) come in twenty different topologies. Typical examples are depicted in
Fig. 1. We shall renormalize the strong coupling constant and the top-quark mass ac-
cording to the MS scheme. The appropriate counterterms are listed in Ref. [21]. In this
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way, we obtain

a(0) = Nozy {% +al— % +hCr (—f—z +2 e - 100 %7-) + K2CF [27¢(3) + 6
12 12 1 119 93
+Cr (? — G+ (244(3) - '6') +1 (72((3) - -2—) + 24 B, — 108((4)
331 22 83 1 T\ 22,
+ 106¢(3) + '—1—2‘) + Cy (-3-;-,- ~3a2 + P (—12{(3) + ?) + ?l
+ 142 41 (—364(3) - %1) — 12B, + 54{(4) — %((3) - 7)
_4 10 8 4, 85, 32,4 ]}
+n,( e 16 3) . (11)

When we combine Eq. (11) with the corresponding expression for IIyw(0) [13], the ul-
traviolet divergences cancel, and we obtain

19

5, = Nz, {% +hCr (11-2(2) + 3 ) +KCr [24;352 449

14 79
- TC(3) - ?4(2) + 3
+0r (217 41 (-12¢(2) - %) + 4B, +2D, - 3¢ L ac(4) + ) - g3—9(:(2)

2
- %:’1) +C4 (76—712 +1 (-333((2) + %) — 9B, — Dy + 10453 Sy + 15¢(4)

509 73 953 7 4 73 8 14 55
- SH@) - 5@ + 57 ) +ay (-3 41 (502 - 5) - 3@ + 3¢ - 1)}

A %Nc:c, [1 + a(21+ 0.869 561) + a? (%12 +6.0108561 — 2.742 226)] . (12)

With the help of Eq. (3), we may eliminate m;(u) in favour of M;, which leads to

7 ' 12
S = NX, {5 + hOr (~20(2) ~ 3) + WCr [2035, - %22¢(3) - 2¢(2) +

+Cp 4B+ 200 - 205, 1 20(0) + Z2¢(9) + ¢(2) (12m2 - B8) - 19

2 9
+Cy4 (L (—%c(z) - 11) —2B,—D; + 1T3 Sy + 15¢(4) — %C(?»)

+ ¢(@) (-stn2 - ) = 22) 4y (2 (5020 +2) - 0) + 1202) + )|}
~ %ch.u — 1.797105a — 4(3.144934 L + 16.200 847)]. (13)

. Equation (13) reproduces the O(GrM?) and O(a,GrM}) terms found in Refs. (22, 7],
respectively. We observe that the new O(a?GrM?) term in Eq. (13) enhances the QCD
correction and thus supports the screening of the leading-order M; dependence. The
choice p = M, is singled out, since it eliminates the terms containing L in Eq. (13).
The nonlogarithmic coefficient of (a,/7)? in Eq. (13) is relatively large; it exceeds the
corresponding coefficient of Ap in Eq. (6) by approximately 11%. If we consider the ratio
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of the coefficient of (a,/7)? to the one of a,/, the difference is even more pronounced;
the corresponding numbers for Eqs. (13) and (6) are roughly 9 versus 5.

A phenomenologically interesting application of Eq. (10) is to study the effect of QCD
corrections on I'(H — ¢*{~). The corrections through O(a?GrM?) to this observable
may be accommodated by multiplying the Born formula [22] with

Kun = (1+6,)°
=1+ 26, (14)

where we have suppressed terms of O(G% M) in the second line. This implies that §, is
gauge independent and RG invariant in these orders. In order to avoid double counting,
the O(GrM}) term must once be subtracted when the full one-loop correction [22] is
included. A detailed numerical analysis will be presented in Section 4.

Next, we shall derive the O(a?GrM}?) correction to the low-My effective W+W-H
interaction Lagrangian. In contrast to the £*{~ H case, we are now faced with the task of
computing genuine three-point amplitudes at three loops, which, at first sight, appears to
be enormously hard. Fortunately, in the limit that we are interested in, this problem may
be reduced to one involving just three-loop two-point diagrams by means of a low-energy
theorem [4, 25]. Generally speaking, this theorem relates the amplitudes of two processes
which differ by the insertion of an external Higgs-boson line carrying zero four-momentum.
It allows us to compute a loop amplitude, M(A — B+ H), with an external Higgs boson
which is light compared to the virtual particles by differentiating the respective amplitude
without that Higgs boson, M(A — B), with respect to the virtual-particle masses. More
precisely [4, 25],

. 1 m.'a
where 1 runs over all massive virtual particles which are involved in the transition 4 —
B. Here, it is understood that the differential operator does not act on factors of m;
appearing in coupling constants, since this would generate tree-level interactions involving
the Higgs boson that do not exist in the SM. This theorem has variously been applied at
leading order [4, 25] and has even made its way into standard text books [26]. Special
care must be exercised if this theorem is to be applied beyond leading order. Then,
it must be formulated for the bare quantities of the theory, and the renormalization
must be performed after the left-hand side of Eq. (15) has been constructed [8]. The
beyond-leading-order version of this theorem (8] has recently been employed to find the
O(a,GrM?) corrections to I (H - bZ) 8], T (Z - ffH), and o(ete” — ZH) [10]. A
comprehensive review of higher-order applications of this and related low-energy theorems
may be found in Ref. [11]. An axiomatic formulation of these soft-Higgs theorems has
recently been introduced in Ref. [27].

Proceeding along the lines of Refs. [10, 11], we find the bare W+W~ H interaction
Lagrangian including its genuine vertex corrections to be

7z [1 _ (mf)*8 Mww(0)
v° o(m): (My)? |’

Lwsw-i = 2 My ) (WF)°(W-+)° (16)
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where it is understood that I w(0) is expressed in terms of the bare top-quark mass,
m?, while all other quark masses are put to zero. We renormalize the W-boson mass and
wave function according to the electroweak on-shell scheme by substituting

(M) = M3, + 6My,,
(W2)° = WE(1 + 62w)'/?, (17)
with the counterterms
§M?%, = Tww(0), .
§Zw = —yyw(0). (18)

For dimensional reasons, §Zw does not receive corrections in the orders that we are
interested in. Using Eq. (8), we thus obtain

Lw+w-g = G MEWIWH(1 + Swwn), (19)
where
Swwr = bu+ 60 H (20)
and the non-universal part herein may be calculated from ‘

WWH _ _(m?)za Oww(0)
™ = [1 a(m?)Z] @) (21)

In Ref. [13], Hww(0) is expressed in terms of renormalized parameters. Thus, we have to
undo the top-quark mass renormalization [21] before we can apply Eq. (21). Then, after
evaluating the right-hand side of Eq. (21), we reintroduce the renormalized top-quark
mass and so obtain a finite result for SKWH , which we combine with §, to get éwwn. If
we define the top-quark mass according to the MS scheme, then the result is

- ' 44 1
Swwa = Nz {—% + hCr (—51 -24(2) + ;—) + h*CF [24352 - TQC(3) - —;‘((2) +

83 1053 383
+Cr (-1512 +1 (-124(2) + ?) 4B, +2D; — 82 + 2(4) + Z(3)

43 377 55 , 22 331 1053
".9“2)+ 72)+C“("6"l +l("3C(2)—T§)_2B“_D3+ 7>

+1568) - 2240 - Be) - B s (B 41 (5004 5) - 3¢

24 3
D))

1
~ -%ch, [1 +a(21 + 0.382614) + a? (—4-5-12 +4.1848021 + 1.343 710)] . (22)

79
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The corresponding formula written in terms of M, reads

5 449 46 49
Swwr = N.X; {—6 + hCF (—2((2) + 9) + hZCF [24352 - TC(3) -+ ?C(z) + ?
1053 443 551 1
+Cp (4B +2Ds - 225+ (4) + 5¢(3) +¢(2) (~s0m 2 + 21) - 25
1053 353

+Ca (L (-%2-((2) + 33) = 2By — Dy + — =52 + 15((4) - —=((3)

4
+ o=+ 28 0, (1 (0 -0) - 00~ e - 2)]

~ —chXg[l —2.284 053 a — a%(3.997092 L + 10.816 384)]. (23)

We recover the O(GrM?) and O(a,GrM?) terms of Refs. 28, 11], respectively. Similarly
to Ap and §,, the O(a?GrM?) term of Eq. (23) supports the screening of the one-loop
M, dependence by the leading-order QCD correction. Here, the coefficient of (a,/7)? is
by 26% smaller than in the case of Ap, but it, too, is about five times bigger than the
coefficient of a, /.

From Eq. (19) it follows on that I'(H — W*W ™) receives the correction factor

Kwwn =1+ 2bwwn. (24)

Thus, both §*"# and Swwpy are gauge independent and RG invariant to the orders
that we are working in. The tree-level formula for I'(H — W*W~) and its full one-
loop correction may be found in Ref. [28]. In order for the Higgs boson to decay into a
W+W = pair, it must satisfy My > 2Mw. On the other hand, the high- M, approximation
is based on My < M,. Since these two conditions conflict with each other [1], the
application of Eq. (19) to I'(H — W*W™) is somewhat academic. However, the first
condition is relaxed to My > Mw or removed altogether if one or both of the W bosons
are allowed to leave their mass shells, respectively. In order to avoid gluon exchange
between the W+ W~ H vertex and the external fermions, we restrict our considerations to
leptonic currents. The resulting class of processes includes H — (W+)*W~ — £y, W-,
H - WHW-) - WH g, H - (W) (W) — Ly l-vp, as well as ete” —
Deve(WH) (W-) — UeveH via WYW~ fusion. The Born formulae for these 1 — 3,
1 — 4, and 2 — 3 processes may be found in Refs. [29, 30, 31], respectively. Since Gr
is defined through the radiative correction to the muon decay, which is a charged-current
process, the W-boson propagator does not receive radiative corrections in the orders of
interest here. Therefore, the correction factors of all these processes coincide with the one
 for T(H - W+W~-).

Finally, we shall treat the ZZH interaction. The procedure is very similar to the
W+W~H case. Application of the low-energy theorem (15) to the bare Z-boson vacuum
polarization induced by the top quark yields

H° (m?)28 T zz(0)
Lzzy = (Mg)zzgzpov_o 1- 6(1:1.?)2 (M2 |

(25)
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Again, (M3)* = M} + §M3, with §M% = IIz2(0), and ZJ = Z,. Together with Eq. (8),
we then have

Lzzn = 221G MEZ,ZH(1 + 8221), (26)

where 7z = 6, + §22H | with the non-universal part,

ZZH _ _(m?)za Iz2(0)
527" = |t~ G| gy

- (27)

being separately finite, gauge independent, and RG invariant.
Starting from the expression for IIzz(0) listed in Ref. [13] and repeating the steps of
the W*W ™ H analysis, we obtain

449 14 79
5 ¢B) = 5¢@) + 5

S8+ 20(4) + 22¢(3)

§az1 = Nz {—% +hCr (~51-2(2) + 23—5) + K2Cr [24352 _

+ CF (—-1512 +1 (—12((2) + %5-) + 4By +2D; —

2
259 593 55 , 22 65 1053
~ @)+ 35) 4 Oa (=5 41 (=540 + 3g) 2B~ Do+ 5,
293 73 613
+ 150(4) - 50(3) - 3¢ + 57
5p (3 _Ei)_ﬁ u _25_)]}
o (3' 3@ -7) 3@+ T -5
~ —chz, [1 +a(21 — 2.017386) + o (14—512 — 4.8151981 — 1.086 685)] (28)

in the MS scheme and

§zzy = N X, {-% + hCF (—2((2) -+ 15) + hch [24352 - é%gC(:‘}) + %C(Z) + %
' 1053 443 335\ 1019
+Cr (4194 +2Ds = =5+ 2(4) + 5((3) +4(2) (-801n2 + -9—) - —9—)
+Ca (L (—%(2) +55) ~2B,~ Dy + =25, 4 15¢(4) - 3573«3)
113\ 3697 4 8
+ (@) (102 - 37) + Tg7) + s (2 (50 - 10) - 3e@) - 22 - 32 |}
~ _-:.ch,u — 4.684053a — a?(8.197002 L + 6.846 779)] (29)

in the on-shell scheme. The O(GrM?) and O(a,GrM?) terms of Eq. (29) agree with those
found in Refs. [23, 10], respectively. Again, the O(a2GrM?) term of Eq. (29) reinforces the
potential of the QCD corrections to reduce the leading-order M; dependence. Comparing
bzzy with Ap, §,, and dwwy, we observe that it has the largest a,/7 coefficient but the
smallest (a,/7)? coefficient, the ratio of the latter to the former only being about 1.5.
The (a,/7)? coefficient of §zzy is by 53% smaller than the one of Ap in Eq. (6).
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From Eq. (26), we infer that I'(H — ZZ) receives the correction factor
Kzzn =1+ 26zz4. (30)

The Born formula for I'(H — ZZ) and its full one-loop correction may be found in
Ref. [23]. Since the condition 2M7z < My < M, is likely to be unrealistic [1], the high-M,
approximation underlying Eq. (26) is of limited usefulness for H — ZZ. We can evade
this problem by allowing for one or both of the Z bosons to go off-shell. In addition.to
the information contained in Eq. (26), we then need to account for the corresponding
corrections arising from the gauge sector. However, in order not to invoke unknown QCD
corrections, we have to restrict ourselves to the inclusion of lepton lines. The form of
the additional corrections depends on the considered reaction. It is useful to divide the
phenomenologically relevant processes into three classes:

(1) H—> 2*Z - ffZ,Z —» Z*H — ffH and ete~ — ZH;
(2) H— 2*Z2* - fff'f and ete” = Z2* - Z2*H — ffH (via Higgs-strahlung);
(3) efe” —» ete™Z*Z* — ete™ H (via ZZ fusion).

Here, f and f’ stand for neutrinos and charged leptons. The results for H — ffZ at tree
level [29] and at one loop (6], for Z — ffH at tree level [32] and at one loop [33], for
e*e”™ — ZH at tree level and at one loop [31], for H — fff'f' at tree level [30], and for
ete~ — ffH at tree level [31] are in the literature. In the next section, we shall discuss
the corrections to these processes in O(a?GrM}), with n =0, 1,2.

3 Corrections from the gauge sector

The IBA [14] provides a systematic and convenient method to incorporate the dominant
corrections of fermionic origin to processes within the gauge sector of the SM. These are
- contained in Ap and Aa = 1-a/a, which parameterizes the running of the fine-structure
constant from its value, a, defined in Thomson scattering to its value, @, measured at
the Z-boson scale. The recipe is as follows. Starting from the Born formula expressed in
terms of a, ¢y, 3y, and the physical particle masses, one substitutes

o«
T 1-Aad’
¢ =8 =1-3,=c(1-Ap) - (31)

a—a

To eliminate @ in favour of G, one exploits the relation

V2 a &

which correctly accounts for the leading fermionic corrections.
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We shall now employ the IBA to find the additional corrections through O(a?GrM?)
to the four- and five-point processes with a ZZ H coupling, which we have classified in
Section 2. We shall always assume that the Born formulae are written in terms of GF,
Cw, 8w, and the physical particle masses. The generic correction factor for class (1) reads

[10, 33]
(1+672H)* ] + a}
1-Ap vi+d}

=1+25””+( —8¢2, ?fl_f )Ap, (33)

K(f)

where vy = 2I; — 432 Q;, ¥y = 2I; — 432Qy, ay = 214, Q; is the electric charge of f in
units of the positron charge, I; is the third component of weak isospin of the left-handed
component of f, and we have omitted terms of O(G%M}!) in the second line. Similarly,
the correction factor for class (2) is given by [34]

P (1 + 6%2H)? %% + a% v + a%
(1—Ap)? v} +a} vh +ak

=1 26‘ZZH 211 =4 2 va.f Qf'vf' Aop. 4
+ + [ Cw (v}+a§+v§,+a§, P (34)

Here and in the following, we neglect interference terms of five-point amplitudes with a
single fermion trace, since, in the kinematic regime of interest here, these are strongly
suppressed, by I'v /My, with V = W, Z. Such terms have recently been included in a
tree-level calculation of I'(H — 2V — 4f) for My < My [35).

The correction factor for case (3) is slightly more complicated because the electron and
positron lines run from the initial state to the final state. Allowing for generic fermion
flavours, f and f’, the Born cross section may be evaluated from

AFF = FFE) = SV [+ ) + 3)A & doayupasB], (39)
where i / / a(z,) )
M Je Y o(y = =)/ 3T

and similarly for B, 4/s is the centre-of-mass energy, and the plus/minus sign refers to an
odd/even number of antifermions in the initial state. The process under case (3), with an
ete~ initial state, requires the plus sign. The integrands read

z (1 P
Z(i-1
)]+y2(y )1+z7

] e

22: 1+2z 24z 1
s = (- + 55 ) |

T 242 1 z
b(z,y)—-(‘?"*' 2y _E) [1+z

1+2
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where z = (y/M2)(s — M}/z). The inner integration in Eq. (36) has been carried out
analytically in Appendix A of Ref. [31]. By means of the IBA, we obtain the correction
factor for Eq. (35) as

K:g'f‘f’) _ (1 + JZZH)Z (i} + a})(ﬁﬁ, + a"},)A :!: 4Tl-fafiflale
(1—2A4p) (v}+a})(v} +a%)A L4vsasvpapB

2 " g
=1+2b‘ZZH+2[1_ 4Cw (va.f + vaf )

1+r \v}+a} i +ad
22, (Qy  Qp
- (2L XY A,
1+1/1‘ (vf + ‘vf: p (38)
where
_ :i:4vfafvf:af:B
T = a2 AV E (39)
('Uf + a!)(vf, + af:)A

We wish to point out that, in the limit » — 0, K3 coincides with K,. Detailed analysis
reveals that r is quite small in magnitude whenever e*e™ — e*e™H via ZZ fusion is
phenomenologically relevant. In fact, if we consider energies /s > 150 GeV and demand
that the total cross section of this process be in excess of 10~2 fb~!, then we find |r| < 1%.
This concludes our discussion of the additional QCD corrections to the processes under
items (1)—(3) originating in the gauge sector.

4 Numerical results

We are now in a position to explore the phenomenological implications of our results. We
shall take the values of our input parameters to be My = 80.26 GeV, Mz = 91.1887 GeV
[36], M, = 180 GeV [1], and a{®)(Mz) = 0.118 [37].! The latter corresponds to a{®(M,) =
0.1071, which entails that A% = 91 MeV in Eq. (1). If we use the one-loop formula for

a{®(p), i.e., Eq. (1) with the second term within the square brackets discarded, A%
comes down to 41 MeV.

Any perturbative calculation to finite order depends on the choice of renormalization
scheme and, in general, also on one or more renormalization scales. It is generally believed
that the scheme and scale dependences of a calculation up to a given order indicate the
size of the unknown higher-order contributions, i.e., they provide us with an estimate of
the theoretical uncertainty. Of course, the central values and variations of the scales must
be judiciously chosen in order for this estimate to be meaningful. If the perturbation
series converges, then the scheme and scale dependences are expected to decrease as the
respective next order is taken into account. This principle has recently been confirmed
for Ap (13, 38]. Here, we have the opportunity to carry out similar studies for the three
additional observables é., dwwr, and 8zzy. Similarly to Ref. [13], we have presented our
results in the on-shell and MS schemes as functions of a single renormalization scale, p.

!Note that this value does not include results from lattice computations.
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In the MS scheme, one could, in principle, introduce individual renormalization scales for
the coupling and the mass. For simplicity, we have chosen not to do so. It is natural to
define the central value of x in such a way that, at this point, the radiative correction
is devoid of logarithmic terms. This leads us to set g = £ M, in the on-shell scheme and
p = €pe, where y; = my(p,), in the MS scheme. We may obtain p; as a closed function of
M, by iterating Eq. (3), with the result that

B — 1~ 4HCr + HPCr {~12(2) + 6+ Cr [~12((3) + 6¢(2)(8102 = 5) + —"]
+ Cy4 [6((3) +8¢(2)(—3ln2+1) - % +ny [44(2) + I—; }
~1— 4§A — 6.458 784 A2, | (40)

where A = 4H = a,(M;)/x. For M; = 180 GeV, Eq. (40) yields yu; = 170.5 GeV, in good
agreement with the exact fix point of Eq. (3), which is y; = 170.6 GeV.

Table 1: Relative deviations (in %) of Ap, 8, Swwa, and 8zzy from the respective one-
loop results due to their corrections up to O(a,) and O(a?). The renormalization scale
dependence is investigated by choosing p = é M;, with ¢ variable. ‘

¢ | Ap/ap™ =1 [%)] | 6./60 =1 (%] | bwwar/6Wwe — 1 (%) | 5zz6/65%s — 1 [%)]

O(a,) | O(a2) | Ofa,) | O(a;) | O(as) | O(a}) Oa,) | O(e,)
1/4 | —11.68 | —11.83 | —7.34 | —8.65 | —9.33 | —9.35 | —19.13 | —16.58
1/2 | —10.63 | —11.72 | —6.68 | —8.34 | —8.49 | —9.24 | -17.40 | —16.83
1 | -9.75 | —11.44 | —6.12 | —8.01 | -7.78 | —9.04 | —15.96 | —16.76
2 | —9.00 | —11.11 | —5.66 | —7.67 | —-7.19 | -8.79 | -14.74 | -16.51
4 | -8.36 | —10.74 | —5.26 | —7.35 | —6.68 | —8.51 | —13.70 | —16.15

Table 2: Relative deviations (in %) of Ap, 84, Swwr, and 8zzy from the respective one-
loop results due to their corrections up to O(a,) and O(a?). The renormalization scale
dependence is investigated by choosing p = £u,, with ¢ variable.

¢ | A5/APYM =1 (%] | 8./60 = 1 (%] | Swwr/8%wn — 1 (%) | 8220/65 %, — 1 [%)

Oa,) | O(a3) | O(a,) |O(a) | Ofan) | Ofe) | Ofe) | O(af)
1/4 | —15.63 | —11.15 | —10.70 | —8.25 | —12.96 | —8.67 | —24.09 | —15.15
1/2 | —10.89 | —11.55 | —6.87 | —8.22 | —8.71 | —9.09 | -17.77 | —16.56
1 | -896 | —11.19 | —5.63 | -7.79 | —7.15 | —8.86 | —14.69 | —16.51
2 | —8.64 | —10.88 | —5.82 | -7.56 | -7.11 | —871 |-13.49| -16.16
4 | 924 | —1085 | —6.81 [ -7.70 | -7.92 | -8.84 |-1341| -15.93

In Tables 1 and 2, we investigate the ¢ dependence of 8, wwr, and 82z and their MS
counterparts, respectively. For comparison, we also include the results for Ap and Ap. To
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be specific, we consistently evaluate these quantities to leading and next-to-leading order
in QCD and study their relative deviations from their respective one-loop values, which
we denote by the superscript (1), e.g., Ap(!) = N_X,, etc. Notice that the on-shell and MS
results coincide at one loop. In our O(a,) analysis, we use the one-loop formula for a,(u)
with A% = 41 MeV and omit the O(a?) terms in Egs. (3) and (40). For the time being,
let us concentrate on the entries for § = 1 and assess the effect of the QCD corrections as
well as their scheme dependence. We observe that, in both schemes, the QCD corrections
are throughout negative, even for 8, and &wwn, where the O(a,) and O(a?) terms are in
part positive. This is due to the fact that we consistently compute all QCD parameters,
i.e., a,(p), me(p), and py, to the orders under consideration. The reduction in z,, which
occurs as an overall factor in the MS formulae, happens to overcompensate the positive
effect of these particular coefficients. Inclusion of the O(a?) terms in (Ap, 6y, Swwn,8z2zH)
increases the size of the QCD corrections by (17,31,16,5)%, respectively. In the MS
case, the increments amount to (25,38,24,12)% of the respective O(a,) corrections. As
might be expected, the scheme dependence of the QCD corrections to this quadruplet of
quantities is dramatically reduced, by (68,55,71,80)%, as we pass from O(a,) to O(a?).
Let us now also include the other £ values in our consideration. Within each scheme, we
determine the scale dependence of the QCD correction to a given quantity by comparing
its largest and smallest values in the interval 1/4 < §{ < 4. As expected, the scale
dependence is drastically decreased when we take the O(a?) terms into account, namely
by (66,37,68,87)% and (89,87,93,86)% in the on-shell and MS schemes, respectively.
The exceptionally small reduction of the scale dependence in the case of §, is due to the
~ fact that §, has the smallest O(a,) term and the largest O(a?) term of all four on-shell
quantities.

Table 3: Coefficients of the correction factors in the form of Eq. (41) for the various
Higgs-boson decay rates and production cross sections discussed in the text. In the last
line, z = B/A, where A and B are given by Eq. (36), and terms of O(z?) have been
neglected.

K Ci C. Cs

Kun /3 ~1.797 —16.201
Kwwy -5/3 —2.284 —-10.816
Kzzi ~5/3 —4.684 —6.847

k¥ -2/3 —7.420 4.774

k¥ ~1.272 —5.249 —4.445
KM 1/3 6.261 —53.330
k¥ —0.272 —14.025 32.824

K —0.878 —6.323 0.113

K\ | —0.878 — 2353z | —6.323 + 9.281z | 0.113 — 39.416 =

In the remainder of this section, we shall stick to the on-shell scheme. In Eqgs. (14),
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(24), (30), (33), (34), and (38), we have presented correction factors for various Higgs-
boson production cross sections and decay rates in terms of Ap, é,, dwwr, and ézzy. It
is instructive to cast these correction factors into the generic form

K =1+ CApY [1 + Caa (1 + zaL) + Cgaz] , (41)

4
where C; (1 = 1,2,3) are numerical coefficients. Notice that we have kept the full p
dependence in Eq. (41). We could have written Egs. (6), (13), (23), and (29) in the same
way. The fact that the coefficient of aL is universal may be understood by observing that
K represents a physical observable, which must be RG invariant through the order of our
calculation, and that, to leading order of QCD, K only implicitly depends on u, via a. In
fact, the coeflicient of aL is nothing but S, of Eq. (2). The outcome of this decomposition
is displayed in Table 3. In the case of Kéa) , we have treated z = B/A, where A and B are
defined in Eq. (36), as an additional expansion parameter and discarded terms of O(z?).
This is justified because, in practice, |z| < 1, e.g., for /s = 300 GeV and My = 100 GeV,
we find 2 & —5.233-10~2. While in the case of the three basic corrections, Kyup, Kwwa,
and Kzzy, C; and Cj; are both negative, this is not in general so. In fact, in all composite
corrections, except for K9, the O(a?) terms partially compensate the O(a,) ones. In
K;W), we even find a counterexample to the heuristic rule [10] that, in the Gr formulation
of the on-shell scheme, the O(GrM?) terms get screened by their QCD corrections. In
the latter case, we also encounter a gigantic value of C3. Both features may be ascribed
to the fact, that, in O(GrM}?), the zzy and Ap terms of ng) largely cancel. The
extraordinarily large value of C3 in K. é”‘) is also accompanied by a suppression of C;. The
C, values of K 5“) and K. §”) are relatively small, too. We are thus in the fortunate position
that the leading high-M, corrections to the 2 — 3 and 1 — 4 processes of Higgs-boson
production and decay with a ZZ H coupling, for which full one-loop calculations have not
yet been performed, are throughout quite small. Thus, there is hope that the subleading
fermionic corrections to these processes will not drastically impair the situation. However,
the IBA does not provide us with any information on the bosonic corrections.

Table 4: Full one-loop weak corrections (in %) to various Higgs-boson decay rates and
production cross sections and their O(GrM?) terms. In the last line, we have used

V3 =175 GeV.

Observable | My [GeV] | O(a) weak [%] | O(GFrM?) [%
I'(H - r*17) 75 1.792 2.369
T(H — vi2) 105 1.275 —0.677

T(H — t+-2) | 105 ~1.220 ~1.202
I(Z — voH) 65 0.024 —0.677
I(Z - t+-H)| 65 0.296 ~1.202
o(ete - ZH)| 15 —2.203 ~1.20

In this context, it is -interesting to revisit processes for which the full one-loop weak
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corrections are known and to investigate in how far the O(GrM?) terms play a dominant
role there. Here, we are only interested in reactions which already proceed at tree level.
Specifically, we shall consider Z — ffH [33] for My = 65 GeV, H — 7t7~ [22] and
ete — ZH [31] for My = 75 GeV, and H — ffZ [6] for My = 105 GeV, where
f = v,L. Our analysis of o(ete™ — ZH) will refer to LEP2 energy, /s = 175 GeV. In
all these cases, the quantumelectrodynamical (QED) and weak corrections are separately
finite and gauge independent at one loop. In Table 4, we compare the full one-loop weak
corrections to these processes with their O(GrM?) terms. In the case of H — 7+,
H — £+4~Z, and ete” — ZH, the O(GrM}) terms give a reasonably good account of
the full corrections, while they come out with the wrong sign in the other cases. However,
the full calculations for My = 65 GeV give very small results anyway. On the other hand,
the O(GrM(}) term for H — vvZ is suppressed due to a partial cancellation between
§zzy and Ap in Kl(") and cannot be expected to dominate the full correction. Whenever
the full correction is known, it should be included on the right-hand side of Eq. (41) with
the O(GrM?) term subtracted. In conclusion, the radiative corrections considered in
Table 4 all appear to be well under control.

5 Conclusions

In this paper, we have presented the three-loop O(a?GrM}) corrections to the effective
Lagrangians for the interactions of light Higgs bosons with pairs of charged leptons, W
bosons, and Z bosons in the SM. While the demand for corrections in this order is certainly
more urgent in the gauge sector {13], where precision test are presently being carried out,
our analysis is also interesting from a theoretical point of view, since it allows us to
recognize a universal pattern. In addition to Ap, we have now three more independent
observables with quadratic M; dependence at our disposal for which the QCD expansion is
known up to next-to-leading order, namely 4., Swwy, and §zzy. In the on-shell scheme of
electroweak and QCD renormalization, these four electroweak parameters exhibit striking
common properties. In fact, the leading- and next-to-leading-order QCD corrections act
in the same direction and screen the O(GrM?) terms. Even the sets of a,/7 and (o, /7)?
coefficients each lie in the same ball park. For the choice p = M, the coeflicients of a, /7
range between —1.797 and —4.684, and those of (a,/7)? between —6.847 and —16.201. If
we compare this with the corresponding coefficients of the ratio u?/M?, which are —2.667
and —11.140, then it becomes apparent that the use of the top-quark pole mass is the
origin of these similarities. Here, g = my(p,), for which we have presented a closed
two-loop formula. If we express the QCD expansions in terms of y; rather than M, and
choose p = 4, then the coeflicients of a,/r and (a,/)? nicely group themselves around
zero; they range from —2.017 to 0.870 and from —3.970 to 1.344, respectively. This
indicates that the perturbation expansions converge more rapidly if we renormalize the
top-quark mass according to the MS scheme. Without going into details, we would like
to mention that the study of renormalons [39] offers a possible theoretical explanation of
this observation. Since the on-shell and MS results coincide in lowest order, this does, of -
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course, not imply that the QCD corrections are any smaller in the MS scheme. It just
means that, as a rule, the O(Gr M}?) terms with M; replaced by the two-loop expression for
st are likely to provide fair approximations for the full three-loop results. Furthermore, we
have demonstrated that, similarly to Ap, the scheme and scale dependences of 6, Swww,
and §zzy are considerably reduced when the next-to-leading-order QCD corrections are
taken into account. Armed with this information, we have made rather precise predictions
for a variety of production and decay processes of low-mass Higgs bosons at present and
future ete™ colliders. In all the cases considered here, the radiative corrections appear to
be well under control now. ‘
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Figure 1: Typical Feynman diagrams pertinent to Iy u(g?) in O(a?GrM?). f stands for
any quark.
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